Real time detection of structural breaks in GARCH models Scholarly Editions uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • This paper proposes a sequential Monte Carlo method for estimating GARCH models subject to an unknown number of structural breaks. We use particle filtering techniques that allow for fast and efficient updates of posterior quantities and forecasts in real-time. The method conveniently deals with the path dependence problem that arises in these type of models. The performance of the method is shown to work well using simulated data. Applied to daily NASDAQ returns, the evidence favors a partial structural break specification in which only the intercept of the conditional variance equation has breaks compared to the full structural break specification in which all parameters are subject to change. Our empirical application underscores the importance of model assumptions when investigating breaks. A model with normal return innovations result in strong evidence of breaks; while more flexible return distributions such as t-innovations or adding jumps to the model still favor breaks but indicate much more uncertainty regarding the time and impact of them.

publication date

  • November 2010