With increasing awareness of age-related bone loss and osteoporosis in modern Western populations, a growing number of studies have set out to investigate whether individuals in the past were similarly affected (Martin and Armelagos, 1979; Bennike and Bohr, 1990; Lees et al., 1993; Agarwal and Grynpas, 1996; Brickley and Howell, 1999; Drusini et al., 2000; Mays, 2000). Research has demonstrated that age-related bone loss and osteoporosis results in changes to cortical bone (Derisquebourg et al., 1994), structural changes to trabecular bone (at a gross and microscopic level [Jayasinghe, 1994]), and bone mass and density (Cummings et al., 1993). Bone turnover and age-related bone loss are highly complex processes (see Chapters 1 and 2, this volume). The interaction between bone loss in both cortical and trabecular bone throughout the skeleton allows a variety of possible approaches to the study of bone loss. A range of techniques have been developed, each of which allows assessment of a different aspect of bone loss. Although this area has generated a great deal of recent interest, the epidemiology of age-related bone loss and fragility fractures, both in clinical and archaeological contexts, is unclear. The history of the development of the disease is not yet fully understood and a range of possibilities is currently being explored. For example, (1994) suggest that increasing bone loss may be an evolutionary trend (see also Chapter 8, this volume).