A Bifunctional Spray Coating Reduces Contamination on Surfaces by Repelling and Killing Pathogens Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Surface-mediated transmission of pathogens is a major concern with regard to the spread of infectious diseases. Current pathogen prevention methods on surfaces rely on the use of biocides, which aggravate the emergence of antimicrobial resistance and pose harmful health effects. In response, a bifunctional and substrate-independent spray coating is presented herein. The bifunctional coating relies on wrinkled polydimethylsiloxane microparticles, decorated with biocidal gold nanoparticles to induce a "repel and kill" effect against pathogens. Pathogen repellency is provided by the structural hierarchy of the microparticles and their surface chemistry, whereas the kill mechanism is achieved using functionalized gold nanoparticles embedded on the microparticles. Bacterial tests with methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa reveal a 99.9% reduction in bacterial load on spray-coated surfaces, while antiviral tests with Phi6─a bacterial virus often used as a surrogate to SARS-CoV-2─demonstrate a 98% reduction in virus load on coated surfaces. The newly developed spray coating is versatile, easily applicable to various surfaces, and effective against various pathogens, making it suitable for reducing surface contamination in frequently touched, heavy traffic, and high-risk surfaces.

publication date

  • March 29, 2023