Polynomial Time and Private Learning of Unbounded Gaussian Mixture
Models
Journal Articles
Overview
Research
View All
Overview
abstract
We study the problem of privately estimating the parameters of
$d$-dimensional Gaussian Mixture Models (GMMs) with $k$ components. For this,
we develop a technique to reduce the problem to its non-private counterpart.
This allows us to privatize existing non-private algorithms in a blackbox
manner, while incurring only a small overhead in the sample complexity and
running time. As the main application of our framework, we develop an
$(\varepsilon, \delta)$-differentially private algorithm to learn GMMs using
the non-private algorithm of Moitra and Valiant [MV10] as a blackbox.
Consequently, this gives the first sample complexity upper bound and first
polynomial time algorithm for privately learning GMMs without any boundedness
assumptions on the parameters. As part of our analysis, we prove a tight (up to
a constant factor) lower bound on the total variation distance of
high-dimensional Gaussians which can be of independent interest.