GANZSTELLENSÄTZE IN THEORIES OF VALUED FIELDS Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The purpose of this paper is to study an analogue of Hilbert's seventeenth problem for functions over a valued field which are integral definite on some definable set; that is, that map the given set into the valuation ring. We use model theory to exhibit a uniform method, on various theories of valued fields, for deriving an algebraic characterization of such functions. As part of this method we refine the concept of a function being integral at a point, and make it dependent on the relevant class of valued fields. We apply our framework to algebraically closed valued fields, model complete theories of difference and differential valued fields, and real closed valued fields.

publication date

  • June 2008