Conceptual frameworks in peatland ecohydrology: looking beyond the two‐layered (acrotelm–catotelm) model Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • AbstractNorthern peatlands are important shallow freshwater aquifers and globally significant terrestrial carbon stores. Peatlands are complex, ecohydrological systems, commonly conceptualized as consisting of two layers, the acrotelm (upper layer) and the catotelm (lower layer). This diplotelmic model, originally posited as a hypothesis, is yet to be tested in a comprehensive manner. Despite this, the diplotelmic model is highly prevalent in the peatland literature, suggesting a general acceptance of the concept. We examine the diplotelmic model with respect to what we believe are three important research criteria: complexity, generality and flexibility. The diplotelmic model assumes that all ecological, hydrological and biogeochemical processes and structures can be explained by a single discrete boundary—depth in relation to a drought water table. This assumption makes the diplotelmic scheme inherently inflexible, in turn hindering its representation of a range of ecohydrological phenomena. We explore various alternative conceptual approaches that might offer greater flexibility, including the representation of horizontal spatial heterogeneity and transfers. We propose that the concept of hot spots, prevalent in terrestrial biogeochemistry literature, might be extended to peatland ecohydrology, providing a more flexible conceptual framework. Hot spots are areas of a peatland which exhibit fast processing rates in a number of mechanistically linked hydrological, ecological and biogeochemical processes. The complementary concept of cold spots may also be useful in peatland ecohydrology, particularly with regards to understanding the vulnerability of peatlands to disturbance. The flexibility of our suggested scheme may allow the future incorporation of ecohydrological phenomena yet to be identified as important in peatlands. Copyright © 2011 John Wiley & Sons, Ltd.

publication date

  • January 2011