Home
Scholarly Works
Magnetoresistance of TTF-TCNQ
Journal article

Magnetoresistance of TTF-TCNQ

Abstract

The magnetoresistance of TTF-TCNQ has been measured for currents along the crystallographic b axis in static fields of 50 kOe for temperatures between 17 and 98 K. For [Formula: see text] the magnetoresistance Δρ/ρ = [ρ(50 kOe) − ρ(0)]/ρ(0) is less than 0.1% in magnitude. There is a peak of about −1.4% at 52.8 ± 0.2 K. Below 50 K, Δρ/ρ is small and negative and is described reasonably well by the formula Δρ/ρ = −(1/2)(μ B H/kT) 2 . At all temperatures Δρ/ρ was found to be approximately independent of the orientation of the applied field with respect to the current. The high temperature behavior is consistent with that expected for a metal in the short scattering time limit [Formula: see text]. We attribute the peak at 52.8 K to the suppression of the metal–insulator transition by the magnetic field, and we show why such behavior would be expected for a Peierls transition. In the low temperature region the crystal acts like a small gap semiconductor for which the –T −2 dependence of Δρ/ρ is easily understood. We note that the peak in the magnetoresistance at 52.8 K strongly suggests that the electronic energy gap goes to zero at this temperature. One is then led to conclude that the decrease in the conductivity between 58 and 53 K is due to resistive fluctuations above the metal–insulator transition.

Authors

Tiedje T; Carolan JF; Berlinsky AJ; Weiler L

Journal

Canadian Journal of Physics, Vol. 53, No. 17, pp. 1593–1605

Publisher

Canadian Science Publishing

Publication Date

September 1, 1975

DOI

10.1139/p75-202

ISSN

0008-4204

Contact the Experts team