Lovastatin Sensitizes Lung Cancer Cells to Ionizing Radiation: Modulation of Molecular Pathways of Radioresistance and Tumor Suppression Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • INTRODUCTION: In this study, we investigated the effect of the 3-hydroxy-3-methylgutaryl-CoA reductase inhibitor lovastatin, as a sensitizer of lung cancer cells to ionizing radiation (IR). METHODS: A549 lung adenocarcinoma cells were treated with 0 to 50 μM lovastatin alone or in combination with 0 to 8 Gy IR and subjected to clonogenic survival and proliferation assays. To assess the mechanism of drug action, we examined the effects of lovastatin and IR on the epidermal growth factor (EGF) receptor and AMP-activated kinase (AMPK) pathways and on apoptotic markers and the cell cycle. RESULTS: Lovastatin inhibited basal clonogenic survival and proliferation of A549 cells and sensitized them to IR. This was reversed by mevalonate, the product of 3-hydroxy-3-methylgutaryl-CoA reductase. Lovastatin attenuated selectively EGF-induced phosphorylation of EGF receptor and Akt, and IR-induced Akt phosphorylation, in a mevalonate-sensitive fashion, without inhibition on extracellular signal-regulated kinase 1/2 phosphorylation by either stimulus. IR phosphorylated and activated the metabolic sensor and tumor suppressor AMPK, but lovastatin enhanced basal and IR-induced AMPK phosphorylation. The drug inhibited IR-induced expression of p53 and the cyclin-dependent kinase inhibitors p21(cip1) and p27(kip1), but caused a redistribution of cells from G1-S phase (control and radiated cells) and G2-M phase (radiated cells) of cell cycle into apoptosis. The latter was also evident by induction of nuclear fragmentation and cleavage of caspase 3 by lovastatin in both control and radiated cells. CONCLUSIONS: We suggest that lovastatin inhibits survival and induces radiosensitization of lung cancer cells through induction of apoptosis, which may be mediated by a simultaneous inhibition of the Akt and activation of the AMPK signaling pathways.

publication date

  • March 2011

has subject area