A209 ROLE OF SEROTONIN-AUTOPHAGY AXIS IN REGULATION OF EPITHELIAL CELL FUNCTION AND MICROBIOTA COMPOSITION IN GUT Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Abstract Background Serotonin (5-hydroxytryptamine; 5-HT), an enteric signalling molecule mainly produced by the enterochromaffin (EC) cells of the intestinal epithelium regulates various processes of the gut. Tryptophan hydroxylase 1 (Tph1) is the rate-limiting enzyme of 5-HT biosynthesis in EC cells. In inflammatory bowel disease (IBD) and experimental colitis, there are alterations in 5-HT content and microbiota composition in the gut. Previously we reported, Tph1-deficient (Tph1-/-) mice with reduced 5-HT in the gut exhibit reduced susceptibility to colitis. The mechanism by which 5-HT regulates colitis is unknown. Autophagy, a catabolic process regulates the function of intestinal epithelial cells (IECs), gut microbiota, and protects against intestinal inflammation. Both aberrant 5-HT signalling and autophagy is implicated in colitis. It is unclear whether they interact in regulation of production of pro-inflammatory cytokines from IECs and gut microbiota composition in relation to colitis. Our hypothesis is, an increase in 5-HT signalling inhibits autophagy in the IECs, which results in up-regulation of colitis by increasing the production of pro-inflammatory cytokines, and by selection for a more colitogenic microbiota. Aims To define the role of 5-HT-autophagy axis in the production of pro-inflammatory cytokines from IECs and gut microbiota composition in intestinal inflammation. Methods We investigated level of autophagy with or without 5% dextran sodium sulphate (DSS) in colons, mucosal scraping and IECs of Tph1-/- and their wild-type (WT) littermates. In addition, autophagy and proinflammatory cytokine production were investigated in human colonic epithelial cells (HT-29) following stimulation by 5-HT. We evaluated colitis and gut microbiota composition in WT, Tph1-/-, epithelial-specific autophagy gene Atg7 deficient (Atg7ΔIEC), and Atg7ΔIECTph1-/- (double knock out; DKO) mice. Results Tph1 -/- mice, with less 5-HT in the gut than WT mice following DSS administration exhibited an up-regulation of autophagy markers in the colon, mucosal scraping and IECs along with reduction of colitis severity. 5-HT treatment of HT-29 cells resulted in down-regulation of autophagy and upregulation of pro-inflammatory cytokine, IL-8. DKO mice exhibited increased severity of DSS-colitis, and altered microbiota composition compared to Tph1-/- mice. Conclusions These findings suggest, an increase in 5-HT in colitis inhibits autophagy in the IECs that contribute to alteration of the gut microbiota and disease severity. Blocking 5-HT signalling may promote autophagy in the IECs and alleviate the severity of colitis. Understanding the contribution of 5-HT in autophagy may identify new therapeutic target in IBD and other intestinal inflammatory conditions that exhibit dysregulated autophagy. Funding Agencies CAG, CIHR

authors

  • Haq, S
  • Wang, H
  • Kim, JJ
  • Kwon, EY
  • Banskota, S
  • Grondin, J
  • Hassan, N
  • Brumell, J
  • Philpott, D
  • Khan, Waliul

publication date

  • February 26, 2020