Thyroglobulin type‐1 domain protease inhibitors exhibit specific expression in the cortical ooplasm of vitellogenic rainbow trout oocytes Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • AbstractThe synthesis, uptake, and processing of yolk proteins remain poorly described aspects of oviparous reproductive development. In this study, we report the identification and characterization of two protease inhibitors in rainbow trout ovary whose expression and distribution are directly associated with yolk protein uptake in vitellogenic oocytes. The first transcript, termed “oocyte protease inhibitor‐1” (OPI‐1), is predicted to encode a 9.1 kDa, 87 amino acid protein containing a single thyroglobulin type‐1 (TY) domain, identifying it as a putative TY domain inhibitor. The second transcript, termed OPI‐2, is predicted to encode an 18.3 kDa, 173 amino acid protein with two similar, but not identical, TY domains. Messenger RNA expression of both genes was first detected in ovarian tissues at the onset of vitellogenesis, and persisted throughout the vitellogenic growth phase. We did not detect expression of either gene in previtellogenic ovaries, nor in any somatic tissues examined. Expression of OPI‐1 mRNA was significantly reduced in atretic follicles as compared to healthy vitellogenic follicles, suggesting a downregulation of inhibitor expression during oocyte atresia. Western immunoblot analyses of whole yolk from vitellogenic oocytes revealed the presence of two immunoreactive proteins that corresponded to the predicted sizes of OPI‐1 and OPI‐2. We detected strong crossreactivity of this antiserum with specific vesicles in the cortical ooplasm of vitellogenic oocytes, in regions directly associated with vitellogenin processing. The identification of OPI‐1 and OPI‐2 provides new evidence for the expression of multiple TY domain protease inhibitors likely involved in the regulation of yolk processing during oocyte growth in salmonids. Mol. Reprod. Dev. 69: 205–214, 2004. © 2004 Wiley‐Liss, Inc.

publication date

  • October 2004

has subject area