Natural Attenuation of Perchlorate in Denitrified Groundwater Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Monitoring of a well-defined septic system groundwater plume and groundwater discharging to two urban streams located in southern Ontario, Canada, provided evidence of natural attenuation of background low level (ng/L) perchlorate (ClO4⁻) under denitrifying conditions in the field. The septic system site at Long Point contains ClO4⁻ from a mix of waste water, atmospheric deposition, and periodic use of fireworks, while the nitrate plume indicates active denitrification. Plume nitrate (NO3⁻ -N) concentrations of up to 103 mg/L declined with depth and downgradient of the tile bed due to denitrification and anammox activity, and the plume was almost completely denitrified beyond 35 m from the tile bed. The ClO4⁻ natural attenuation occurs at the site only when NO3⁻ -N concentrations are <0.3 mg/L, after which ClO4⁻ concentrations decline abruptly from 187 ± 202 to 11 ± 15 ng/L. A similar pattern between NO3⁻ -N and ClO4⁻ was found in groundwater discharging to the two urban streams. These findings suggest that natural attenuation (i.e., biodegradation) of ClO4⁻ may be commonplace in denitrified aquifers with appropriate electron donors present, and thus, should be considered as a remediation option for ClO4⁻ contaminated groundwater.

authors

  • Robertson, William D
  • Roy, James W
  • Brown, Susan J
  • Van Stempvoort, Dale R
  • Bickerton, Greg

publication date

  • January 2014