The multitype continuous-time Markov branching process in a periodic environment Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The multitype continuous-time Markov branching process has many biological applications where the environmental factors vary in a periodic manner. Circadian or diurnal rhythms in cell kinetics are an important example. It is shown that in the supercritical positively regular case the proportions of individuals of various types converge in probability to a non-random periodic vector, independent of the initial conditions, while the absolute numbers of individuals of various types converge in probability to that vector multiplied by a random variable whose distribution depends on the initial conditions. It is noted that the proofs are straightforward extensions of the well-known results for a constant environment.

publication date

  • March 1980