Impacts of Low-Dose Gamma-Radiation on Genotoxic Risk in Aquatic Ecosystems Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Chinook salmon cells were exposed to gamma radiation and chromosome damage was assessed using the micronucleus assay. The salmon cells were resistant to radiation at all doses compared to human and mammalian cells. We used an indirect approach to determine if prior low dose exposures at environmental dose levels might alter the consequences of radiation exposures to high doses of radiation (adaptive response). The cells adapted but only at doses which were above levels that might be expected environmentally. The "adaptive response" endpoint was useful to show biological responses to exposure, however, under these conditions it might not help in risk assessment of aquatic organisms since the cells seem to be very resistant and environmental radiation levels are typically extremely low. Preliminary experiments were conducted on two other fish cell model systems (Rainbow Trout and Medaka) to optimize conditions for the micronucleus assay for future environmental radiation studies. Since fish cells appear to be more radiation resistant than mammalian cells, we postulate that radiation risk in the whole organism may also be lower. Therefore whole body studies designed to test effects with the specific aim of assessing relative risk between species are in process.

publication date

  • October 2007