Cre Levels Limit Packaging Signal Excision Efficiency in the Cre/loxP Helper-Dependent Adenoviral Vector System Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Helper-dependent (HD) adenovirus vectors devoid of all viral coding sequences have a large cloning capacity and provide long-term transgene expression in vivo with negligible toxicity, making them attractive vectors for gene therapy. Currently, the most efficient means of producing HD vectors involves coinfecting 293 cells expressing Cre with the HD vector and a helper virus bearing a packaging signal flanked by loxP sites. Cre-mediated packaging signal excision renders the helper virus genome unpackageable but still able to replicate and provide helper functions for HD vector propagation. Typically, helper virus contamination is < or =1% pre- and < or =0.1% postpurification by CsCl banding. While these contamination levels are low, further reduction is desirable. However, this objective has not been realized since the Cre/loxP system was first developed. This lack of progress is due, at least in part, to our lack of understanding of the origins of the contaminating helper virus, thus rendering its reduction or elimination difficult to achieve. This study was designed to investigate the possible sources of contaminating helper virus persisting during HD vector amplification. The results revealed that Cre is limiting in helper virus-infected Cre-expressing 293 cells, thereby permitting helper viruses to escape packaging signal excision and propagate. The results of this study should provide a foundation for developing rational strategies to further reduce or possibly eliminate the contaminating helper virus.

publication date

  • May 1, 2002