Genes controlling malathion resistance in a laboratory-selected population of Drosophila melanogaster Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The chromosomal locations of several genes responsible for increased malathion resistance in a laboratory-selected population of Drosophila melanogaster have been determined. These genes appear to be involved in the regulation of microsomal cytochrome P-450. A major gene on chromosome 2 (2-64) and at least two genes on chromosome 3 (near 3-58) control increased mixed function oxidase activity, and both larval and adult malathion resistance. Although the chromosome 2 locus was not associated with a significant increase in cytochrome P-450 content, SDS polyacrylamide gel electrophoresis of microsomal proteins detected increased silver staining of a polypeptide having a relative molecular mass (Mr) of about 52 000. Microsomes from strains carrying the chromosome 3 factors for resistance contained more cytochrome P-450 and increased amounts of two heme-staining protein bands (Mr = 50 000 and 54 000). The genes regulating these proteins were closely linked to striped at 3-62 and probably identical to the loci responsible for malathion resistance and increased mixed function oxidase activity. Other R genes on both chromosomes 2 and 3 as well as target resistance were required for the full expression of malathion resistance in the selected Drosophila population. Exposure of this Drosophila melanogaster population to malathion selected a polygenic system for the oxidative metabolism of insecticide.Key words: insecticide resistance, mixed-function oxidase, cytochrome P-450, Drosophila melanogaster.

publication date

  • December 1, 1988

published in