Mitigating Portland Cement CO2 Emissions Using Alkali-Activated Materials: System Dynamics Model Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • While alkali-activated materials (AAMs) have been hailed as a very promising solution to mitigate colossal CO2 emissions from world portland cement production, there is lack of robust models that can demonstrate this claim. This paper pioneers a novel system dynamics model that captures the system complexity of this problem and addresses it in a holistic manner. This paper reports on this object-oriented modeling paradigm to develop a cogent prognostic model for predicting CO2 emissions from cement production. The model accounts for the type of AAM precursor and activator, the service life of concrete structures, carbonation of concrete, AAM market share, and policy implementation period. Using the new model developed in this study, strategies for reducing CO2 emissions from cement production have been identified, and future challenges facing wider AAM implementation have been outlined. The novelty of the model consists in its ability to consider the CO2 emission problem as a system of systems, treating it in a holistic manner, and allowing the user to test diverse policy scenarios, with inherent flexibility and modular architecture. The practical relevance of the model is that it facilitates the decision-making process and policy making regarding the use of AAMs to mitigate CO2 emissions from cement production at low computational cost.

publication date

  • October 21, 2020