Post-activation potentiation in the neocortex. III. Kindling-induced potentiation in the chronic preparation Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Previous experiments have shown the neocortex to be very resistant to the induction of long-term potentiation in chronic preparations. We show here that kindling-induced potentiation effects can be reliably produced in the neocortex of awake, freely moving rats. These effects develop rather slowly. In sites contralateral to the stimulation electrode, potentiation effects did not become clear until the animals had received about 5 days or more of stimulation. Ipsilateral sites required even longer (approximately 10 days), and both sites required more than 13 days to reach asymptotic levels of potentiation. Both monosynaptic and polysynaptic components were present in the neocortical field potentials. When population spikes were absent, the surface negative monosynaptic EPSP component tended to show a potentiation effect. If population spikes were present, they were generally enhanced while the monosynaptic population EPSP tended to be depressed. Consequently, the apparent depression may have been due to competing field currents. The later polysynaptic components (15-28 ms latency to peak) always showed a potentiation effect with 5 or more kindling stimulations and is presumed to result from activation of cortico-cortical associational fibers. All of these effects were long-lasting, showing little decay over a period of several weeks.

publication date

  • December 1995