abstract
- It is possible to describe fermionic phases of matter and spin-topological field theories in 2+1d in terms of bosonic "shadow" theories, which are obtained from the original theory by "gauging fermionic parity". The fermionic/spin theories are recovered from their shadow by a process of fermionic anyon condensation: gauging a one-form symmetry generated by quasi-particles with fermionic statistics. We apply the formalism to theories which admit gapped boundary conditions. We obtain Turaev-Viro-like and Levin-Wen-like constructions of fermionic phases of matter. We describe the group structure of fermionic SPT phases protected by the product of fermion parity and internal symmetry G. The quaternion group makes a surprise appearance.