On 6d N = (2, 0) theory compactified on a Riemann surface with finite area Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • We study 6d N=(2,0) theory of type SU(N) compactified on Riemann surfaces with finite area, including spheres with fewer than three punctures. The Higgs branch, whose metric is inversely proportional to the total area of the Riemann surface, is discussed in detail. We show that the zero-area limit, which gives us a genuine 4d theory, can involve a Wigner-Inonu contraction of global symmetries of the six-dimensional theory. We show how this explains why subgroups of SU(N) can appear as the gauge group in the 4d limit. As a by-product we suggest that half-BPS codimension-two defects in the six-dimensional (2,0) theory have an operator product expansion whose operator product coefficients are four-dimensional field theories.

publication date

  • January 2013