Shellable graphs and sequentially Cohen–Macaulay bipartite graphs Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Associated to a simple undirected graph G is a simplicial complex whose faces correspond to the independent sets of G. We call a graph G shellable if this simplicial complex is a shellable simplicial complex in the non-pure sense of Bjorner-Wachs. We are then interested in determining what families of graphs have the property that G is shellable. We show that all chordal graphs are shellable. Furthermore, we classify all the shellable bipartite graphs; they are precisely the sequentially Cohen-Macaulay bipartite graphs. We also give an recursive procedure to verify if a bipartite graph is shellable. Because shellable implies that the associated Stanley-Reisner ring is sequentially Cohen-Macaulay, our results complement and extend recent work on the problem of determining when the edge ideal of a graph is (sequentially) Cohen-Macaulay. We also give a new proof for a result of Faridi on the sequentially Cohen-Macaulayness of simplicial forests.

publication date

  • July 2008