A Database of Solution Additives Promoting Mg2+ Dehydration and the Onset of MgCO3 Nucleation
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Formed via aqueous carbonation of Mg2+ ions, the crystallization of magnesite (MgCO3) is a promising route to carbon capture and reuse, albeit limited by the slow precipitation of MgCO3. Although magnesite is naturally abundant, forming at low temperature conditions, its industrial production is an energy-intensive process due to the temperatures required to prevent the formation of hydrated phases. The principal difficulty in aqueous conditions arises from the very strong Mg2+···H2O interaction, with high barriers to Mg2+ dehydration. Using atomistic simulations, we have investigated the influence of 30 additive anions (X n-, n = 1-3), ranging from simple halides to more complex molecules, on the first two steps of MgCO3 aggregation from solution, as follows: Mg2+ dehydration and subsequent prenucleative Mg2+···CO3 2- pairing. We have computed the thermodynamic stabilities of solvent shared ion pairs (Mg2+···H2O···X n-) and contact ion pairs (Mg2+···X n-) to reveal the propensity of solution additives to inhibit or promote Mg2+···CO3 2- formation. We have determined the stabilization of undercoordinated hydrated Mg2+ states with a vacant coordination site to which CO3 2- can bind, subsequently initiating MgCO3 nucleation or Mg2+ incorporation into the crystal lattice. Extensive molecular dynamics simulations of electrolyte solutions containing Na2CO3 with different sources of Mg2+ (i.e., MgCl2, MgSO4, and Mg(CH3COO)2) further show that the degree of dehydration of Mg2+ and the structure of prenucleation MgCO3 clusters change depending on the counterion identity. Through a fundamental understanding of the role of solution additives in the mechanism of Mg2+ dehydration, our results help to rationalize previously reported experimental observation of the effect of solvation environments on the growth of magnesite. This understanding may contribute to identifying the solution composition and conditions that could promote the low-temperature CO2 conversion into MgCO3 at industrially relevant scales.