Magnetic Field Structure and Stochastic Reconnection in a Partially Ionized Gas
Academic Article

Overview

Research

Identity

Additional Document Info

View All

Overview

abstract

We consider stochastic reconnection in a magnetized, partially ionized
medium. Stochastic reconnection is a generic effect, due to field line
wandering, in which the speed of reconnection is determined by the ability of
ejected plasma to diffuse away from the current sheet along magnetic field
lines, rather than by the details of current sheet structure. We consider the
limit of weak stochasticity, so that the mean magnetic field energy density is
greater than either the turbulent kinetic energy density or the energy density
associated with the fluctuating component of the field. We consider field line
stochasticity generated through a turbulent cascade, which leads us to consider
the effect of neutral drag on the turbulent cascade of energy. In a
collisionless plasma, neutral particle viscosity and ion-neutral drag will damp
mid-scale turbulent motions, but the power spectrum of the magnetic
perturbations extends below the viscous cutoff scale. We give a simple physical
picture of the magnetic field structure below this cutoff, consistent with
numerical experiments. We provide arguments for the reemergence of the
turbulent cascade well below the viscous cut-off scale and derive estimates for
field line diffusion on all scales. We note that this explains the persistence
of a single power law form for the turbulent power spectrum of the interstellar
medium, from scales of tens of parsecs down to thousands of kilometers. We find
that under typical conditions in the ISM stochastic reconnection speeds are
reduced by the presence of neutrals, but by no more than an order of magnitude.