abstract
- The capillary-induced structural instability of an elastic circular tube partially filled by a liquid is studied by combining theoretical analysis and molecular dynamics simulations. The analysis shows that, associated with the instability, there is a well-defined length scale (elasto-capillary length), which exhibits a scaling relationship with the characteristic length of the tube, regardless of the interaction details. We validate this scaling relationship for a carbon nanotube partially filled by liquid iron. The capillary-induced structural transformation could have potential applications for nano-devices.