Dynamical Stability of Six-Dimensional Warped Brane-Worlds
Academic Article

Overview

Research

Identity

Additional Document Info

View All

Overview

abstract

We study a generalization of the Randall-Sundrum mechanism for generating the
weak/Planck hierarchy, which uses two rather than one warped extra dimension,
and which requires no negative tension branes. A 4-brane with one exponentially
large compact dimension plays the role of the Planck brane. We investigate the
dynamical stability with respect to graviton, graviphoton and radion modes. The
radion is shown to have a tachyonic instability for certain models of the
4-brane stress-energy, while it is stable in others, and massless in a special
case. If stable, its mass is in the milli-eV range, for parameters of the model
which solve the hierarchy problem. The radion is shown to couple to matter with
gravitational strength, so that it is potentially detectable by
submillimeter-range gravity experiments. The radion mass can be increased using
a bulk scalar field in the manner of Goldberger and Wise, but only to order
MeV, due to the effect of the large extra dimension. The model predicts a
natural scale of 10^{13} GeV on the 4-brane, making it a natural setting for
inflation from the ultraviolet brane.