One-loop generated anomalous gauge couplings Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Conventional wisdom has it that anomalous gauge-boson self-couplings can be at most a percent or so in size. We test this wisdom by computing these couplings at one loop in a generic renormalizable model of new physics. (For technical reasons we consider the CP-violating couplings here, but our results apply more generally.) By surveying the parameter space we find that the largest couplings (several percent) are obtained when the new particles are at the weak scale. For heavy new physics we compare our findings with expectations based on an effective-lagrangian analysis. We find general patterns of induced couplings which robustly reflect the nature of the underlying physics. We build representative models for which the new physics could be first detected in the anomalous gauge couplings.

publication date

  • March 1996