New class of Majoron-emitting double-βdecays Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Motivated by the excess events that have recently been found near the endpoints of the double beta decay spectra of several elements, we re-examine models in which double beta decay can proceed through the neutrinoless emission of massless Nambu-Goldstone bosons (majorons). Noting that models proposed to date for this process must fine-tune either a scalar mass or a VEV to be less than 10 keV, we introduce a new kind of majoron which avoids this difficulty by carrying lepton number $L=-2$. We analyze in detail the requirements that models of both the conventional and our new type must satisfy if they are to account for the observed excess events. We find: (1) the electron sum-energy spectrum can be used to distinguish the two classes of models from one another; (2) the decay rate for the new models depends on different nuclear matrix elements than for ordinary majorons; and (3) all models require a (pseudo) Dirac neutrino, having a mass of a several hundred MeV, which mixes with $\nu_e$.

publication date

  • June 1, 1994