abstract
- The fixed point structure of the 2D 3-state random-bond Potts model with a bimodal ($\pm$J) distribution of couplings is for the first time fully determined using numerical renormalization group techniques. Apart from the pure and T=0 critical fixed points, two other non-trivial fixed points are found. One is the critical fixed point for the random-bond, but unfrustrated, ferromagnet. The other is a bicritical fixed point analogous to the bicritical Nishimori fixed point found in the random-bond frustrated Ising model. Estimates of the associated critical exponents are given for the various fixed points of the random-bond Potts model.