Self-Diffusion in Random-Tiling Quasicrystals Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The first explicit realization of the conjecture that phason dynamics leads to self-diffusion in quasicrystals is presented for the icosahedral Ammann tilings. On short time scales, the transport is found to be subdiffusive with the exponent $\beta\approx0.57(1)$, while on long time scales it is consistent with normal diffusion that is up to an order of magnitude larger than in the typical room temperature vacancy-assisted self-diffusion. No simple finite-size scaling is found, suggesting anomalous corrections to normal diffusion, or existence of at least two independent length scales.

publication date

  • October 31, 1994