Tidal Stirring and the Origin of Dwarf Spheroidals in the Local Group Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • N-Body/SPH simulations are used to study the evolution of dwarf irregular galaxies (dIrrs) entering the dark matter halo of the Milky Way or M31 on plunging orbits. We propose a new dynamical mechanism driving the evolution of gas rich, rotationally supported dIrrs, mostly found at the outskirts of the Local Group (LG), into gas free, pressure supported dwarf spheroidals (dSphs) or dwarf ellipticals (dEs), observed to cluster around the two giant spirals. The initial model galaxies are exponential disks embedded in massive dark matter halos and reproduce nearby dIrrs. Repeated tidal shocks at the pericenter of their orbit partially strip their halo and disk and trigger dynamical instabilities that dramatically reshape their stellar component. After only 2-3 orbits low surface brightness (LSB) dIrrs are transformed into dSphs, while high surface brightness (HSB) dIrrs evolve into dEs. This evolutionary mechanism naturally leads to the morphology-density relation observed for LG dwarfs. Dwarfs surrounded by very dense dark matter halos, like the archetypical dIrr GR8, are turned into Draco or Ursa Minor, the faintest and most dark matter dominated among LG dSphs. If disks include a gaseous component, this is both tidally stripped and consumed in periodic bursts of star formation. The resulting star formation histories are in good qualitative agreement with those derived using HST color-magnitude diagrams for local dSphs.

authors

  • Mayer, Lucio
  • Governato, Fabio
  • Colpi, Monica
  • Moore, Ben
  • Quinn, Thomas
  • Wadsley, James
  • Stadel, Joachim
  • Lake, George

publication date

  • February 1, 2001