Orbital decay of supermassive black hole binaries in clumpy multiphase merger remnants
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
We simulate an equal-mass merger of two Milky Way-size galaxy discs with
moderate gas fractions at parsec-scale resolution including a new model for
radiative cooling and heating in a multi-phase medium, as well as star
formation and feedback from supernovae. The two discs initially have a
$2.6\times10^6\mathrm{~M_{\odot}}$ supermassive black hole (SMBH) embedded in
their centers. As the merger completes and the two galactic cores merge, the
SMBHs form a a pair with a separation of a few hundred pc that gradually
decays. Due to the stochastic nature of the system immediately following the
merger, the orbital plane of the binary is significantly perturbed.
Furthermore, owing to the strong starburst the gas from the central region is
completely evacuated, requiring $\sim10$~Myr for a nuclear disc to rebuild.
Most importantly, the clumpy nature of the interstellar medium has a major
impact on the the dynamical evolution of the SMBH pair, which undergo
gravitational encounters with massive gas clouds and stochastic torquing by
both clouds and spiral modes in the disk. These effects combine to greatly
delay the decay of the two SMBHs to separations of a few parsecs by nearly two
orders of magnitude, $\sim 10^8$ yr, compared to previous work. In mergers of
more gas-rich, clumpier galaxies at high redshift stochastic torques will be
even more pronounced and potentially lead to stronger modulation of the orbital
decay. This suggests that SMBH pairs at separations of several tens of parsecs
should be relatively common at any redshift.