Residue Field Domination in Real Closed Valued Fields Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • We define a notion of residue field domination for valued fields which generalizes stable domination in algebraically closed valued fields. We prove that a real closed valued field is dominated by the sorts internal to the residue field, over the value group, both in the pure field sort and in the geometric sorts. These results characterize forking and \th-forking in real closed valued fields (and also algebraically closed valued fields). We lay some groundwork for extending these results to a power-bounded $T$-convex theory.

publication date

  • August 2019