SN 2007od: A TYPE IIP SUPERNOVA WITH CIRCUMSTELLAR INTERACTION
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
SN 2007od exhibits characteristics that have rarely been seen in a Type IIP
supernova (SN). Optical V band photometry reveals a very steep brightness
decline between the plateau and nebular phases of ~4.5 mag, likely due to SN
2007od containing a low mass of 56Ni. The optical spectra show an evolution
from normal Type IIP with broad Halpha emission, to a complex, four component
Halpha emission profile exhibiting asymmetries caused by dust extinction after
day 232. This is similar to the spectral evolution of the Type IIn SN 1998S,
although no early-time narrow (~200 km s-1) Halpha component was present in SN
2007od. In both SNe, the intermediate-width Halpha emission components are
thought to arise in the interaction between the ejecta and its circumstellar
medium (CSM). SN 2007od also shows a mid-IR excess due to new dust. The
evolution of the Halpha profile and the presence of the mid-IR excess provide
strong evidence that SN 2007od formed new dust before day 232. Late-time
observations reveal a flattening of the visible lightcurve. This flattening is
a strong indication of the presence of a light echo, which likely accounts for
much of the broad, underlying Halpha component seen at late-times. We believe
the multi-peaked Halpha emission is consistent with the interaction of the
ejecta with a circumstellar ring or torus (for the inner components at \pm1500
km s-1), and a single blob or cloud of circumstellar material out of the plane
of the CSM ring (for the outer component at -5000 km s-1). The most probable
location for the formation of new dust is in the cool dense shell created by
the interaction between the expanding ejecta and its CSM. Monte Carlo radiative
transfer modeling of the dust emission from SN 2007od implies that up to 4x
10-4Msun of new dust has formed. This is similar to the amounts of dust formed
in other CCSNe such as SNe 1999em, 2004et, and 2006jc.