Home
Scholarly Works
Low-energy electrodynamics of novel spin...
Journal article

Low-energy electrodynamics of novel spin excitations in the quantum spin ice Yb2Ti2O7

Abstract

In condensed matter systems, formation of long-range order (LRO) is often accompanied by new excitations. However, in many geometrically frustrated magnetic systems, conventional LRO is suppressed, while non-trivial spin correlations are still observed. A natural question to ask is then what is the nature of the excitations in this highly correlated state without broken symmetry? Frequently, applying a symmetry breaking field stabilizes excitations whose properties reflect certain aspects of the anomalous state without LRO. Here we report a THz spectroscopy study of novel excitations in quantum spin ice Yb2Ti2O7 under a <001> directed magnetic field. At large positive fields, both right- and left-handed magnon and two-magnon-like excitations are observed. The g-factors of these excitations are dramatically enhanced in the low-field limit, showing a crossover of these states into features consistent with the quantum string-like excitations proposed to exist in quantum spin ice in small <001> fields.

Authors

Pan L; Kim SK; Ghosh A; Morris CM; Ross KA; Kermarrec E; Gaulin BD; Koohpayeh SM; Tchernyshyov O; Armitage NP

Journal

Nature Communications, Vol. 5, No. 1,

Publisher

Springer Nature

Publication Date

January 1, 2014

DOI

10.1038/ncomms5970

ISSN

2041-1723

Contact the Experts team