Experimental evidence for field-induced emergent clock anisotropies in the XY pyrochlore Er2Ti2O7 Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The XY pyrochlore antiferromagnet Er$_2$Ti$_2$O$_7$ exhibits a rare case of $Z_6$ discrete symmetry breaking in its $\psi_2$ magnetic ground state. Despite being well-studied theoretically, systems with high discrete symmetry breakings are uncommon in nature and, thus, Er$_2$Ti$_2$O$_7$ provides an experimental playground for the study of broken $Z_n$ symmetry, for $n>2$. A recent theoretical work examined the effect of a magnetic field on a pyrochlore lattice with broken $Z_6$ symmetry and applied it to Er$_2$Ti$_2$O$_7$. This study predicted multiple domain transitions depending on the crystallographic orientation of the magnetic field, inducing rich and controllable magnetothermodynamic behavior. In this work, we present neutron scattering measurements on Er$_2$Ti$_2$O$_7$ with a magnetic field applied along the [001] and [111] directions, and provide the first experimental observation of these exotic domain transitions. In a [001] field, we observe a $\psi_2$ to $\psi_3$ transition at a critical field of 0.18$\pm$0.05T. We are thus able to extend the concept of the spin-flop transition, which has long been observed in Ising systems, to higher discrete $Z_n$ symmetries. In a [111] field, we observe a series of domain-based phase transitions for fields of 0.15$\pm$0.03T and 0.40$\pm$0.03T. We show that these field-induced transitions are consistent with the emergence of two-fold, three-fold and possibly six-fold Zeeman terms. Considering all the possible $\psi_2$ and $\psi_3$ domains, these Zeeman terms can be mapped onto an analog clock - exemplifying a literal clock anisotropy. Lastly, our quantitative analysis of the [001] domain transition in Er$_2$Ti$_2$O$_7$ is consistent with order-by-disorder as the dominant ground state selection mechanism.

publication date

  • February 6, 2017