Atomic quasi-Bragg-diffraction in a magnetic field
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
We report on a new technique to split an atomic beam coherently with an
easily adjustable splitting angle. In our experiment metastable helium atoms in
the |{1s2s}^3S_1 M=1> state diffract from a polarization gradient light field
formed by counterpropagating \sigma^+ and \sigma^- polarized laser beams in the
presence of a homogeneous magnetic field. In the near-adiabatic regime, energy
conservation allows the resonant exchange between magnetic energy and kinetic
energy. As a consequence, symmetric diffraction of |M=0> or |M=-1> atoms in a
single order is achieved, where the order can be chosen freely by tuning the
magnetic field. We present experimental results up to 6th order diffraction (24
\hbar k momentum splitting, i.e., 2.21 m/s in transverse velocity) and present
a simple theoretical model that stresses the similarity with conventional Bragg
scattering. The resulting device constitutes a flexible, adjustable,
large-angle, three-way coherent atomic beam splitter with many potential
applications in atom optics and atom interferometry.