Numerical solutions of the time-dependent Schrödinger equation in two dimensions Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The generalized Crank-Nicolson method is employed to obtain numerical solutions of the two-dimensional time-dependent Schrödinger equation. An adapted alternating-direction implicit method is used, along with a high-order finite-difference scheme in space. Extra care has to be taken for the needed precision of the time development. The method permits a systematic study of the accuracy and efficiency in terms of powers of the spatial and temporal step sizes. To illustrate its utility the method is applied to several two-dimensional systems.

publication date

  • February 2017