BMO estimates for the <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msup><mml:mi>H</mml:mi><mml:mo>∞</mml:mo></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mi mathvariant="double-struck">B</mml:mi><mml:mi>n</mml:mi></mml:msub><mml:mo stretchy="false">)</mml:mo></mml:math> Corona problem Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • We study the $H^{\infty}(\mathbb{B}_{n})$ Corona problem $\sum_{j=1}^{N}f_{j}g_{j}=h$ and show it is always possible to find solutions $f$ that belong to $BMOA(\mathbb{B}_{n})$ for any $n>1$, including infinitely many generators $N$. This theorem improves upon both a 2000 result of Andersson and Carlsson and the classical 1977 result of Varopoulos. The former result obtains solutions for strictly pseudoconvex domains in the larger space $H^{\infty}\cdot BMOA$ with $N=\infty $, while the latter result obtains $BMOA(\mathbb{B}_{n})$ solutions for just N=2 generators with $h=1$. Our method of proof is to solve $\overline{\partial}$-problems and to exploit the connection between $BMO$ functions and Carleson measures for $H^{2}(\mathbb{B}_{n})$. Key to this is the exact structure of the kernels that solve the $\overline{\partial}$ equation for $(0,q)$ forms, as well as new estimates for iterates of these operators. A generalization to multiplier algebras of Besov-Sobolev spaces is also given.

publication date

  • June 2010