Globular Clusters and X‐Ray Point Sources in Centaurus A (NGC 5128) Academic Article uri icon

  • Overview
  • Research
  • Identity
  • Additional Document Info
  • View All


  • We detect 353 X-ray point sources, mostly low-mass X-ray binaries (LMXBs), in four Chandra observations of Centaurus A (NGC 5128), the nearest giant early-type galaxy, and correlate this point source population with the largest available ensemble of confirmed and likely globular clusters associated with this galaxy. Of the X-ray sources, 31 are coincident with 30 globular clusters that are confirmed members of the galaxy by radial velocity measurement (2 X-ray sources match one globular cluster within our search radius), while 1 X-ray source coincides with a globular cluster resolved by HST images. Another 36 X-ray point sources match probable, but spectroscopically unconfirmed, globular cluster candidates. The color distribution of globular clusters and cluster candidates in Cen A is bimodal, and the probability that a red, metal rich GC candidate contains an LMXB is at least 1.7 times that of a blue, metal poor one. If we consider only spectroscopically confirmed GCs, this ratio increases to ~3. We find that LMXBs appear preferentially in more luminous (massive) GCs. These two effects are independent, and the latter is likely a consequence of enhanced dynamical encounter rates in more massive clusters which have on average denser cores. The X-ray luminosity functions of the LMXBs found in GCs and of those that are unmatched with GCs reveal similar underlying populations, though there is some indication that fewer X-ray faint LMXBs are found in globular clusters than X-ray bright ones. Our results agree with previous observations of the connection of GCs and LMXBs in early-type galaxies and extend previous work on Centaurus A.


  • Woodley, Kristin A
  • Raychaudhury, Somak
  • Kraft, Ralph P
  • Harris, William Edgar
  • Jordán, Andrés
  • Whitaker, Katherine E
  • Jones, Christine
  • Forman, William R
  • Murray, Stephen S

publication date

  • July 20, 2008