The Kinematics and Dynamics of the Globular Clusters and Planetary Nebulae of NGC 5128 Academic Article uri icon

  • Overview
  • Research
  • Identity
  • Additional Document Info
  • View All


  • A new kinematic and dynamic study of the halo of the giant elliptical galaxy, NGC 5128, is presented. From a spectroscopically confirmed sample of 340 globular clusters and 780 planetary nebulae, the rotation amplitude, rotation axis, velocity dispersion, and the total dynamical mass are determined for the halo of NGC 5128. The globular cluster kinematics were searched for both radial dependence and metallicity dependence by subdividing the globular cluster sample into 158 metal-rich ([Fe/H] > -1.0) and 178 metal-poor ([Fe/H] < -1.0) globular clusters. Our results show the kinematics of the metal-rich and metal-poor subpopulations are quite similar. The kinematics are compared to the planetary nebula population where differences are apparent in the outer regions of the halo. The total mass of NGC 5128 is found using the Tracer Mass estimator (Evans et al. 2003), to determine the mass supported by internal random motions, and the spherical component of the Jeans equation to determine the mass supported by rotation. We find a total mass of (1.0+/-0.2) x 10^(12) Msun from the planetary nebulae data out to a projected radius of 90 kpc and (1.3+/-0.5) x 10^(12) Msun from the globular clusters out to a projected radius of 50 kpc. Lastly, we present a new and homogeneous catalog of known globular clusters in NGC 5128. This catalog combines all previous definitive cluster identifications from radial velocity studies and HST imaging studies, as well as 80 new globular clusters from a study of M.A. Beasley et al. (2007, in preparation).


  • Woodley, Kristin A
  • Harris, William Edgar
  • Beasley, Michael A
  • Peng, Eric W
  • Bridges, Terry J
  • Forbes, Duncan A
  • Harris, Gretchen LH

publication date

  • August 2007