We present a new method to classify galaxies from large surveys like the
Sloan Digital Sky Survey using inclination-corrected concentration,
inclination-corrected location on the color-magnitude diagram, and apparent
axis ratio. Explicitly accounting for inclination tightens the distribution of
each of these parameters and enables simple boundaries to be drawn that
delineate three different galaxy populations: Early-type galaxies, which are
red, highly concentrated, and round; Late-type galaxies, which are blue, have
low concentrations, and are disk dominated; and Intermediate-type galaxies,
which are red, have intermediate concentrations, and have disks. We have
validated our method by comparing to visual classifications of high-quality
imaging data from the Millennium Galaxy Catalogue. The inclination correction
is crucial to unveiling the previously unrecognized Intermediate class.
Intermediate-type galaxies, roughly corresponding to lenticulars and early
spirals, lie on the red sequence. The red sequence is therefore composed of two
distinct morphological types, suggesting that there are two distinct mechanisms
for transiting to the red sequence. We propose that Intermediate-type galaxies
are those that have lost their cold gas via strangulation, while Early-type
galaxies are those that have experienced a major merger that either consumed
their cold gas, or whose merger progenitors were already devoid of cold gas
(the ``dry merger'' scenario).