Home
Scholarly Works
An Effective Point Cloud Classification Method...
Conference

An Effective Point Cloud Classification Method Based on Improved Non-local Neural Networks

Abstract

Deep learning is an important method to deal with point cloud, but its ability is limited to extract local features of point cloud. Many deep learning networks are designed to capture the local information, but they ignore the importance of non-local features to the point cloud. This paper proposes an improved non-local neural networks for point cloud classification. The non-local module can extract local and non-local features of the point cloud simultaneously. The local information is obtained based on the feature distance between neighborhood points searched by k-nearest neighbor method. The extracted local features are integrated into the non-local network, which can capture non-local features from the entire point cloud. The designed non-local module can be easily inserted into the existing point cloud processing network. The proposed method is evaluated on well-known ModelNet40 shape classification benchmark. Experimental results show that the proposed method achieves a significant improvement in classification accuracy.

Authors

Song Y; Liu X; Shen W; Gao Y; Zhou X; Lu P

Volume

00

Pagination

pp. 665-670

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Publication Date

May 6, 2022

DOI

10.1109/cscwd54268.2022.9776080

Name of conference

2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD)
View published work (Non-McMaster Users)

Contact the Experts team