Coherence, incoherence, and scaling along thecaxis ofYBa2Cu3O6+xJournal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
The optical properties of single crystals of YBa_2Cu_3O_{6+x} have been
examined along the c axis above and below the critical temperature (T_c) for a
wide range of oxygen dopings. The temperature dependence of the
optically-determined value of the dc conductivity (\sigma_{dc}) in the normal
state suggests a crossover from incoherent (hopping-type) transport at lower
oxygen dopings (x \lesssim 0.9) to more coherent anisotropic three-dimensional
behavior in the overdoped (x \approx 0.99) material at temperatures close to
T_c. The assumption that superconductivity occurs along the c axis through the
Josephson effect yields a scaling relation between the strength of the
superconducting condensate (\rho_{s,c}, a measure of the number of
superconducting carriers), the critical temperature, and the normal-state
c-axis value for \sigma_{dc} just above T_c; \rho_{s,c} \propto \sigma_{dc}
T_c. This scaling relation is observed along the c axis for all oxygen dopings,
as well as several other cuprate materials. However, the agreement with the
Josephson coupling model does not necessarily imply incoherent transport,
suggesting that these materials may indeed be tending towards coherent behavior
at the higher oxygen dopings.