Modeling Uptake of Selected Pharmaceuticals and Personal Care Products into Food Crops from Biosolids-Amended Soil Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Biosolids contain a variety of pharmaceuticals and personal care products (PPCPs). Studies have observed the uptake of PPCPs into plants grown in biosolids-amended soils. This study examined the ability of Dynamic Plant Uptake (DPU) model and Biosolids-amended Soil Level IV (BASL4) model to predict the concentration of eight PPCPs in the tissue of plants grown in biosolids-amended soil under a number of exposure scenarios. Concentrations in edible tissue predicted by the models were compared to concentrations reported in the literature by calculating estimated human daily intake values for both sets of data and comparing them to an acceptable daily intake value. The equilibrium partitioning (EqP) portion of BASL4 overpredicted the concentrations of triclosan, triclocarban, and miconazole in root and shoot tissue by two to three orders of magnitude, while the dynamic carrot root (DCR) portion overpredicted by a single order of magnitude. DPU predicted concentrations of triclosan, triclocarban, miconazole, carbamazepine, and diphenhydramine in plant tissues that were within an order of magnitude of concentrations reported in the literature. The study also found that more empirical data are needed on the uptake of cimetidine, fluoxetine, and gemfibrozil, and other ionizable PPCPs, to confirm the utility of both models. All hazard quotient values calculated from literature data were below 1, with 95.7% of hazard quotient values being below 0.1, indicating that consumption of the chosen PPCPs in plant tissue poses de minimus risk to human health.

publication date

  • October 7, 2014