Geometry of discrete quantum computing
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Conventional quantum computing entails a geometry based on the description of
an n-qubit state using 2^{n} infinite precision complex numbers denoting a
vector in a Hilbert space. Such numbers are in general uncomputable using any
real-world resources, and, if we have the idea of physical law as some kind of
computational algorithm of the universe, we would be compelled to alter our
descriptions of physics to be consistent with computable numbers. Our purpose
here is to examine the geometric implications of using finite fields Fp and
finite complexified fields Fp^2 (based on primes p congruent to 3 mod{4}) as
the basis for computations in a theory of discrete quantum computing, which
would therefore become a computable theory. Because the states of a discrete
n-qubit system are in principle enumerable, we are able to determine the
proportions of entangled and unentangled states. In particular, we extend the
Hopf fibration that defines the irreducible state space of conventional
continuous n-qubit theories (which is the complex projective space CP{2^{n}-1})
to an analogous discrete geometry in which the Hopf circle for any n is found
to be a discrete set of p+1 points. The tally of unit-length n-qubit states is
given, and reduced via the generalized Hopf fibration to DCP{2^{n}-1}, the
discrete analog of the complex projective space, which has p^{2^{n}-1}
(p-1)\prod_{k=1}^{n-1} (p^{2^{k}}+1) irreducible states. Using a measure of
entanglement, the purity, we explore the entanglement features of discrete
quantum states and find that the n-qubit states based on the complexified field
Fp^2 have p^{n} (p-1)^{n} unentangled states (the product of the tally for a
single qubit) with purity 1, and they have p^{n+1}(p-1)(p+1)^{n-1} maximally
entangled states with purity zero.