Effects of soybean oil and dietary copper levels on nutrient digestion, ruminal fermentation, enzyme activity, microflora and microbial protein synthesis in dairy bulls Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The study evaluated the effects of soybean oil (SO) and dietary copper levels on nutrient digestion, ruminal fermentation, enzyme activity, microflora and microbial protein synthesis in dairy bulls. Eight Holstein rumen-cannulated bulls (14 ± 0.2 months of age and 326 ± 8.9 kg of body weight) were allocated into a replicated 4 × 4 Latin square design in a 2 × 2 factorial arrangement with factors being 0 or 40 g/kg dietary dry matter (DM) of SO and 0 or 7.68 mg/kg DM of Cu from copper sulphate (CS). The basal diet contained per kg DM 500 g of corn silage, 500 g of concentrate, 28 g of ether extract (EE) and 7.5 mg of Cu. The SO × CS interaction was significant (p < 0.05) for ruminal propionate proportion and acetate to propionate ratio. Dietary SO addition increased (p < 0.05) intake and total tract digestibility of EE but did not affect average daily gain (ADG) of bulls. Dietary CS addition did not affect nutrient intake but increased (p < 0.05) ADG and total tract digestibility of DM, organic matter, crude protein and neutral detergent fibre. Ruminal pH was not affected by treatments. Dietary SO addition did not affect ruminal total volatile fatty acids (VFA) concentration, decreased (p < 0.05) acetate proportion and ammonia N and increased (p < 0.05) propionate proportion. Dietary CS addition did not affect ammonia N, increased (p < 0.05) total VFA concentration and acetate proportion and decreased (p < 0.05) propionate proportion. Acetate to propionate ratio decreased (p < 0.05) with SO addition and increased (p < 0.05) with CS addition. Dietary SO addition decreased (p < 0.05) activity of carboxymethyl cellulase, cellobiase and xylanase as well as population of fungi, protozoa, methanogens, Ruminococcus albus and R. flavefaciens but increased (p < 0.05) α-amylase activity and population of Prevotella ruminicola and Ruminobacter amylophilus. Dietary CS addition increased (p < 0.05) activity of cellulolytic enzyme and protease as well as population of total bacteria, fungi, protozoa, methanogens, primary cellulolytic and proteolytic bacteria. Microbial protein synthesis was unchanged with SO addition but increased (p < 0.05) with CS addition. The results indicated that the addition of CS promoted nutrient digestion and ruminal fermentation by stimulating microbial growth and enzyme activity but did not relieve the negative effects of SO addition on ruminal fermentation in dairy bulls.

authors

  • Shang, Xinkun
  • Wang, Cong
  • Zhang, Guangwen
  • Liu, Qiang
  • Guo, Gang
  • Huo, Wenjie
  • Zhang, Jing
  • Pei, Caixia

publication date

  • July 3, 2020