Ground Target Tracking Using an Airborne Angle-Only Sensor with Terrain Uncertainty and Sensor Biases Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Airborne angle-only sensors can be used to track stationary or mobile ground targets. In order to make the problem observable in 3-dimensions (3-D), the height of the target (i.e., the height of the terrain) from the sea-level is needed to be known. In most of the existing works, the terrain height is assumed to be known accurately. However, the terrain height is usually obtained from Digital Terrain Elevation Data (DTED), which has different resolution levels. Ignoring the terrain height uncertainty in a tracking algorithm will lead to a bias in the estimated states. In addition to the terrain uncertainty, another common source of uncertainty in angle-only sensors is the sensor biases. Both these uncertainties must be handled properly to obtain better tracking accuracy. In this paper, we propose algorithms to estimate the sensor biases with the target(s) of opportunity and algorithms to track targets with terrain and sensor bias uncertainties. Sensor bias uncertainties can be reduced by estimating the biases using the measurements from the target(s) of opportunity with known horizontal positions. This step can be an optional step in an angle-only tracking problem. In this work, we have proposed algorithms to pick optimal targets of opportunity to obtain better bias estimation and algorithms to estimate the biases with the selected target(s) of opportunity. Finally, we provide a filtering framework to track the targets with terrain and bias uncertainties. The Posterior Cramer–Rao Lower Bound (PCRLB), which provides the lower bound on achievable estimation error, is derived for the single target filtering with an angle-only sensor with terrain uncertainty and measurement biases. The effectiveness of the proposed algorithms is verified by Monte Carlo simulations. The simulation results show that sensor biases can be estimated accurately using the target(s) of opportunity and the tracking accuracies of the targets can be improved significantly using the proposed algorithms when the terrain and bias uncertainties are present.

publication date

  • January 10, 2022