Home
Scholarly Works
Cannabinoid WIN55212‐2 impairs peanut‐allergic...
Journal article

Cannabinoid WIN55212‐2 impairs peanut‐allergic sensitization and promotes the generation of allergen‐specific regulatory T cells

Abstract

BACKGROUND: Cannabinoids are lipid-derived mediators with anti-inflammatory properties in different diseases. WIN55212-2, a non-selective synthetic cannabinoid, reduces immediate anaphylactic reactions in a mouse model of peanut allergy, but its capacity to prevent peanut-allergic sensitization and the underlying mechanisms remains largely unknown. OBJECTIVE: To investigate the capacity of WIN55212-2 to immunomodulate peanut-stimulated human dendritic cells (DCs) and peanut-allergic sensitization in mice. METHODS: Surface markers and cytokines were quantified by flow cytometry, ELISA and qPCR in human monocyte-derived DCs (hmoDCs) and T-cell cocultures after stimulation with peanut alone or in the presence of WIN55212-2. Mice were epicutaneously sensitized with peanut alone or peanut/WIN55212-2. After peanut challenge, drop in body temperature, haematocrit, clinical symptoms, peanut-specific antibodies in serum and FOXP3+ regulatory (Treg) cells in spleen and lymph nodes were quantified. Splenocytes were stimulated in vitro with peanut to analyse allergen-specific T-cell responses. RESULTS: WIN55212-2 reduced peanut-induced hmoDC activation and promoted the generation of CD4+ CD127- CD25+ FOXP3+ Treg cells, while reducing the induction of IL-5-producing T cells. In vivo, WIN55212-2 impaired the peanut-induced migration of DCs to lymph nodes and their maturation. WIN55212-2 significantly reduced the induction of peanut-specific IgE and IgG1 antibodies in serum during epicutaneous peanut sensitization, reduced the clinical symptoms score upon peanut challenge and promoted the generation of allergen-specific FOXP3+ Treg cells. CONCLUSIONS: The synthetic cannabinoid WIN55212-2 interferes with peanut sensitization and promotes tolerogenic responses, which might well pave the way for the development of novel prophylactic and therapeutic strategies for peanut allergy.

Authors

Angelina A; Jiménez‐Saiz R; Pérez‐Diego M; Maldonado A; Rückert B; Akdis M; Martín‐Fontecha M; Akdis CA; Palomares O

Journal

Clinical & Experimental Allergy, Vol. 52, No. 4, pp. 540–549

Publisher

Wiley

Publication Date

April 1, 2022

DOI

10.1111/cea.14092

ISSN

0954-7894

Contact the Experts team