Atmospheric remote sensing to detect effects of temperature inversions on sputum cell counts in airway diseases Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Temperature inversions result in the accumulation of air pollution, often to levels exceeding air quality criteria. The respiratory response may be detectable in sputum cell counts. This study investigates the effect of boundary layer temperature inversions on sputum cell counts. Total and differential cell counts of neutrophils, eosinophils, macrophages and lymphocytes were quantified in sputum samples of patients attending an outpatient clinic. Temperature inversions were identified using data from the Atmospheric Infrared Sounder, an atmospheric sensor on the Aqua spacecraft which was launched in 2002 by the National Aeronautics and Space Administration. On inversion days, a statistically significant increase in the percent of cells that were neutrophils was observed in stable patients. There was also a statistically significant increase in the percent of cells that were macrophages, in exacerbated patients. Multivariate linear regression models were used to assess the relationship between temperature inversions and cell counts, controlling patients' age, smoking status, medications and meteorological variables of temperature and humidity. The analyses indicate that, in the stable and exacerbated groups, percent neutrophils and macrophages increased by 12.6% and 2.5%, respectively, on inversion days. These results suggest that temperature inversions need consideration as an exacerbating factor in bronchitis and obstructive airway disease. The effects of air pollutants, nitrogen dioxide, carbon monoxide, fine particulate matter and ozone, were investigated. We identified no significant associations with any pollutant. However, we found that monthly averages of total cell counts were strongly correlated with monthly nitrogen dioxide concentrations, an association not previously identified in the literature.

publication date

  • August 2010