Nanoconfined Water Effect on CO2 Utilization and Geological Storage Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • AbstractUnderstanding nanoconfined water effect on CO2 utilization and storage has tremendous implications in academic research and practical applications, especially for extremely low‐permeability shale reservoirs. Here, a new nanoscale‐extended cubic‐plus association equation of state is developed by including the confinement effects and intermolecular interactions, based on which the phase behavior and interfacial tension of the pure water and water‐CO2 system are accurately calculated. Moreover, three important parameters, caprock‐sealing pressure, maximum storage height, and storage capacity, are quantitatively determined for assessing the potential for the CO2 storage. On the basis of the results from this study, the negative effect of nanoconfiend water can be substantially reduced or even converted to be positive for the CO2 utilization and storage in the shale reservoirs due to the extremely small pore scale as well as the associated strong confinements and intermolecular interactions. Overall, this study supports the foundation of general practical applications pertaining to CO2 utilization and geological storage in unconventional low‐permeability shale formations with existence of nanoconfined water.

publication date

  • August 16, 2020