An Inexact Mix-Integer Two-Stage Linear Programming Model for Supporting the Management of a Low-Carbon Energy System in China Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • In view of the great contribution of coal-fired units to CO2 emissions, the coupled coal and power system with consideration of CO2 mitigation is a typical sub-system of the highly emitting Chinese energy system for low-carbon studies. In this study, an inexact mix-integer two-stage programming (IMITSP) model for the management of low-carbon energy systems was developed based on the integration of multiple inexact programming techniques. Uncertainties and complexities related to the carbon mitigation issues in the coupled coal and power system can be effectively reflected and dealt with in this model. An optimal CO2 mitigation strategy associated with stochastic power-generation demand under specific CO2 mitigation targets could be obtained. Dynamic analysis of capacity expansion, facility improvement, coal selection, as well as coal blending within a multi-period and multi-option context could be facilitated. The developed IMITSP model was applied to a semi-hypothetical case of long-term coupled management of coal and power within a low-carbon energy system in north China. The generated decision alternatives could help decision makers identify desired strategies related to coal production and allocation, CO2 emission mitigation, as well as facility capacity upgrade and expansion under various social-economic, ecological, environmental and system-reliability constraints. It could also provide interval solutions with a minimized system cost, a maximized system reliability and a maximized power-generation demand security. Moreover, the developed model could provide an in-depth insight into various CO2 mitigation technologies and the associated environmental and economic implications under a given reduction target. Tradeoffs among system costs, energy security and CO2 emission reduction could be analyzed.

publication date

  • October 1, 2011